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In this paper, we present a numerical model for laser-plasma interaction involving Raman
instability and Landau damping. This model exhibits three main difficulties. The first one is
the coupling of PDE’s posed both in Fourier space and in physical space. The second one is a
three-waves resonance condition that has to be verified. The third one is the boundary con-
ditions. We overcome these difficulties using, respectively a splitting scheme, a numerical
dispersion relation and absorbing boundary conditions. We present some comparison
between several phenomena that are involved and the influence of the Raman amplifica-
tion and the Landau damping.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction and physical context

The interaction of an intense laser pulse with a plasma is a complex physical phenomenon. Numerical simulation plays a
key role in its understanding. One of the main goal is to simulate nuclear fusion by inertial confinement in a laboratory. We
therefore need some accurate and reliable numerical models of laser-plasma interactions. Vlasov or particle-in-cell (PIC)
simulations have been used for a complete description of the problem. However, these kinetic simulations have difficulties
in studying weak instabilities and long time behaviors because they need to resolve very small spatial and temporal scales.
For the same reasons, it is not possible to use Euler–Maxwell equations.

Recently, Colin and Colin [5], starting from [14], derived a complete set of quasi-linear Zakharov equations describing the
interactions between the laser fields, the stimulated Raman processes, the electronic plasma waves and the low-frequency
variations of density of the ions. The system involves four Schrödinger equations coupled by quasi-linear terms and a wave
equation and describes a three-waves interaction. Physically, the lasers interacts with the plasma, part of it backscattered
through a Raman-type process to create an electron plasma wave. These three-waves interact in order to create a low-fre-
quency variation of density which has itself an influence on the three preceding waves. However, this model that is obtained
starting from the fluid equations does not take into account the kinetic effects such the Landau damping effect which is a
wave-particle process which occurs in under-dense plasma. The Landau damping process is especially important in the con-
text of fusion by inertial confinement by lasers because electrons are accelerated to high energy and this induces a preheat of
the fusion fuel and reduces the target gain. This wave-particle process corresponds to a resonant effect between the electrons
of the plasma and the plasma electronic waves. This effect implies an exchange of energy between electrons and the plasma
waves. As a result, the plasma waves are damped.
. All rights reserved.
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Of course many description of the Landau damping phenomenon exists in the literature starting at the kinetic level (see
Glassey–Schaeffer [11], Degond [8] for example). Here we do not try to obtain such precise models. The aim of this paper is to
propose a numerical model for the coupling of Landau damping and Raman amplification. The main points of this work are:
(i) we introduce a new model which is a generalization of [14,17] and that allows us to recover the main feature of both
processes without using kinetic models. (ii) We provide an accurate scheme with suitable stability properties.

In order to obtain a system describing this wave-particle process we complete the system used in [5] by using the model
derived in [2]. The aim of this paper is to perform mathematically and numerically the coupling of these models that de-
scribes the interaction of the variation of the density of ions with the slowly varying envelope of the plasma electronic
waves, the spatial mean value of the distribution function of the electrons, the laser field and the Raman component. We
want to achieve two goals. The first one is to investigate what is the influence of the Landau damping process on the satu-
ration of the Raman amplification. The second question we want to address is the influence of the Raman instability on the
model [2] in terms of the number of accelerated electrons.

For that study, we use the scheme introduced in [5], a time-splitting discretization for the Landau damping term and a
implicit finite difference scheme for the distribution function of the electrons. The main difficulties are the following:

(i) First we have to couple the equations of the Raman model of [5] with those of the Landau model of [2]. This is done
numerically by using a splitting strategy in Section 3.1. The Landau damping model consist in two partial differential
equations, one is posed in the physical space, the other one in Fourier space. The Fourier transform of some field occurs
explicitly in the partial differential equations. The coupling of such models in the context of boundary value is not
obvious especially because of the electronic plasma waves hat have to be considered in a periodic framework in
the model [2].

(ii) The second difficulty is the three-waves interaction condition. Indeed, it is shown in [5] that the Raman system that is
obtained relies on an interaction condition. In our context, this condition means that the couple ðk1;x1Þ involved in
the system is such that eiðk1x�x1tÞ is an exact solution to a linear Schrödinger equation. It is a phase matching condition.
After discretization, one obtains a numerical phase matching condition that is different from that of the continuous
case. In order to handle this difficulty, we define and use x1d, the frequency given by the numerical dispersion relation.
This is done in Section 3.2.

(iii) The third difficulty is linked to the spatial box. For physical considerations, we cannot use periodic boundary condi-
tions since we want that once a pulse (the laser part or the Raman part) hits the boundary, it does not interact any-
more with the remaining part of the system. We therefore introduce some kind of absorbing boundary conditions. It is
the object of Section 3.3.

The outline of the paper is the following one. Section 2 is devoted to a complete presentation of the model and we intro-
duced a dimensionless form. In Section 3, in order to solve the problem, we introduce an effective numerical scheme and
show some of its stability properties. In Section 4, we deal with the boundary conditions Finally, in the last section, we will
provide some numerical results in order first to validate our methods and then to study the coupling between Raman ampli-
fication and Landau damping process and to compare the results with previous models.

2. The model and its properties

2.1. The equations and their non-dimensional form

In this section, we introduce the one-dimensional system describing the Raman amplification and the Landau damping
process. We consider here an homogeneous plasma where collisions between the particles (electrons and ions) and the grav-
itational field are neglected. We want to describe the interaction of a laser field with this plasma and the physical phenom-
enon quoted previously. In the one-dimensional ðy; vÞ phase space, we use the following model (see [5]):
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Here A0 is the envelope of the vector potential of the incident electromagnetic laser field, AR is the envelope of the vector
potential of Raman backscattered light, E is the slowly varying amplitude of the high-frequency electronic plasma waves,
dn the low-frequency variation of the density of the ions, Fe the spatially averaged electron distribution function, m̂ the spatial
fourier transform of m corresponding to the Landau damping rate and u� is the complex conjugate of u. In this work we con-
sider that the laser propagates in the positive y-direction and we stay in the one-dimensional framework.

This system involves three Schrödinger equations coupled by quasi-linear terms and the low-frequency fluctuation of
density given by the wave equation (2.4). The electron distribution function satisfies a heat equation where the diffusion
coefficient Dðv; tÞ depends on the density spectral energy of electron plasma waves. Concerning the wave-particle process,
the model is valid for bounded velocities that are also bounded away from zero (see [7]). Equation (2.6) is therefore satisfied
on a bounded domain Xv of the form ½�A; a� [ ½a;A�. Note that the term m̂ is a priori not defined on the whole line; we extend it
by zero. The constants are defined by:

� c is the speed of light in the vacuum, e is the elementary electric charge,
� me and mi are, respectively the electron’s and ion’s mass,
� n0 is the mean background density of the plasma,
� Te is the electronic temperature,
� xpe, vthe and cs are, respectively the electronic plasma pulsation, the thermal velocity of electrons and the acoustic velocity

of ions given by
xpe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n0

me

s
; vthe ¼

ffiffiffiffiffiffi
Te

me

s
; cs ¼

ffiffiffiffiffiffi
Te

mi

s
;

� x0, xR, xpe þx1 are, respectively the laser pump frequency, the Raman component frequency and the electronic plasma
wave frequency,

� k0, kR, k1, are, respectively the laser pump wave number, the Raman component wave number and the electronic plasma
wave number.

From the practical point of view, one starts with a non-zero value for the laser field A0 and only noise for AR and E. A
growth of AR and E can occur only if the exponential term eiðk1y�x1tÞ is resonant with the linear part of Eq. (2.3). That means
that ðxpe þx1; k1Þ has to satisfy the dispersion relation of the electronic plasma waves. This resonance condition (called
three-waves resonance condition) means that ðx0;xR;x1Þ and ðk0; kR; k1Þ have to satisfy
x0 ¼ xR þxpe þx1; ð2:7Þ
k0 ¼ kR þ k1: ð2:8Þ
Here ðk0;x0Þ, ðkR;xRÞ correspond to electromagnetic waves while ðk1;xpe þx1Þ, corresponds to electronic plasma waves
and the dispersion relations are therefore
x2
0 ¼ x2

pe þ c2k2
0; ð2:9Þ

x2
R ¼ x2

pe þ c2k2
R; ð2:10Þ

ðxpe þx1Þ2 ¼ x2
pe þ 3v2

thek2
1: ð2:11Þ
Note that, the last relation can be written approximatively x1 �
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The full electric field can then be recovered as follows:
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where c:c: denotes the complex conjugate.
With this model, we can recover the model used in [5] by taking m ¼ 0 in (2.3) to obtain system (2.1)–(2.4) which was

derived from a bi-fluid Euler–Maxwell system. We can also recover the system used in [2] by fixing the potentials AR and
A0 to obtain system (2.3)–(2.6) where in (2.3), we have a fixed source term given by oyðA�RA0eiðk1y�x1tÞÞ.

2.2. Dimensionless system

We now introduce a dimensionless form of (2.1)–(2.6).
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Omitting the tildes, we get the following system for A0, AR, E, dn:
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For the Landau damping part, one gets
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In order to study the quasi-linear diffusion equation (2.17), it is more convenient to use the variable n ¼ kDe
k0v. Then denoting
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2.3. Some basic properties

One first have an energy conservation given by

Proposition 2.1. For any regular solution of (2.12)–(2.17), one has
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Moreover, one has some maximum principle on (2.17) that shows that the convolution term in (2.14) is indeed a damping
term. More precisely, we recall the following result imported from [2]:

Proposition 2.2. If m̂ð0; nÞP 0 for all n, then one have
m̂ðt; nÞ ¼ sgnðnÞonHðt; nÞP 0;
for all n 2 R and t > 0.

Remark 2.1. If the initial distribution function of the electrons is a Maxwellian then one has m̂ð0; nÞP 0. Proposition (2.1)
expresses the decay of the electromagnetic energy due to the Landau damping process between the electron plasma waves
and the electrons.
3. Numerical approximation

In this section, we present an numerical scheme for system (2.12)–(2.17) endowed with the following initial conditions
A0ð0; yÞ ¼ A00ðyÞ; ARð0; yÞ ¼ AR0ðyÞ; Eð0; yÞ ¼ E0ðyÞ; ð3:1Þ
dnð0; yÞ ¼ dn0ðyÞ; otdnð0; yÞ ¼ dn1ðyÞ; Hð0; nÞ ¼ H0ðnÞ: ð3:2Þ
We work on the spatial domain [0, L] and we use a regular mesh in space. The spatial mesh size is dy ¼ L=N for N ¼ 2M being
an even number, the time step being dt > 0 and let the grid points and the time step be
yj ¼ jdy; tk ¼ kdt; j ¼ 0;1; . . . ;N; k ¼ 0;1;2 . . .
with y0 ¼ 0 and yN ¼ L. Since we use the fast Fourier transform in order to compute bE, the mesh in the y variable induces a
mesh for n variable. We therefore define nj ¼ 2pj

L

� �
j¼�N=2;...;0;...N=2�1

, the frequency mesh. It is therefore natural to take nmin ¼ n1
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j be the approximations of A0ðtk; xjÞ, ARðtk; xjÞ, Eðtk; xjÞ, dnðtk; xjÞ,
m̂ðtk; njÞ. Then, in order to be consistent with the evaluation of m̂ðtk; njÞ ¼ sgnðnjÞonHðtk; njÞ by a centered finite difference

scheme, we approximate H on the grid ðnjþ1
2
Þ defined by njþ1

2
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j and its discrete Fourier

coefficient bEk
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Ek
j ¼
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The numerical scheme used in [14] for the wave part of our model is a pseudo-spectral discretization. The authors ob-
served some aliasing errors due to the nonlinear and quasi-linear terms and they were obliged to truncate the Fourier trans-
form of the different fields. In [6], a fractional-step, Crank–Nicolson-type scheme with relaxation directly inspired by that of
Besse for NLS (see [4]) is proposed for the quasi-linear system. For the acoustic part, they used an energy-preserving finite
difference scheme introduced by Glassey (see [10]).

We present our scheme in three parts. In the first part, we give the scheme in itself in the case of periodic boundary con-
dition (Section 3.1). In the second part, we present some stability result (Section 3.2). In the third part, we deal with the
three-waves resonance conditions and we explain how we overcome this difficulty (Section 3.3). In the fourth part, we ex-
plain how one can construct some kind of transparent boundary conditions for our problem (Section 4).

3.1. The numerical scheme

The Landau damping rate in equation (2.14) is given by the diffusion equation (2.18) in Fourier space while the Zakharov
part (2.12)–(2.15) is posed in the physical space. Therefore we have to use a spectral method to evaluate this convolution
operator. In the other hand we cannot use a spectral method for the linear part of (2.12) and (2.13) since we deal with trans-
port operators. To overcome this difficulty, we introduce a splitting technique on the Landau damping process in order to
separate the Raman amplification process and the Landau damping. Therefore, as we will see in numerical applications, since
the group velocity of the electronic plasma waves is closed to zero, this allows us to use a spectral method (periodic bound-
ary conditions for E) to solve the Landau damping part. Finally, for the Raman amplification, we use the numerical scheme
introduced in [6]. We now describe more precisely the different step of our method. If at time tk, we know Ak

0j, Ak
Rj, Ek

j , dnk
j , Hk

jþ1
2

and m̂k
j , we construct Akþ1

0j , Akþ1
Rj , Ekþ1

j , dnkþ1
j , Hkþ1

jþ1
2

and m̂kþ1
j in three steps.

In a first step, we use a scheme for the quasi-linear diffusion equation. In a second one, we introduce the scheme used in
[6] for (2.12)–(2.15) without the convolution operator describing the Landau process and finally, using a fast Fourier trans-
form, we compute the modification given by the Landau damping rate on the electronic plasma waves.

Step 1: The diffusion. In order to evaluate the approximation of Hðtk; njþ1
2
Þ, we use an implicit difference scheme for the

diffusion equation:
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otH � gn2onðjnj3jbEj2onHÞ ¼ 0; n 2 X ¼ ½�nmax;�nmin� [ ½nmin; nmax�;
Concerning the boundary conditions for the distribution H, we used the same one that in [3]. At points n ¼ �nmin correspond-
ing to the highest discrete velocities v ¼ � kDe

k0nmin
, in order to simulate electron’s heating due to the diffusion, we use homo-

geneous Neumann boundary conditions (in practice kDe
k0nmin

	 10). At points n ¼ �nmax corresponding to the smallest discrete

velocities v ¼ � kDe
k0nmax

, the physic established in [14–17] shows that the distribution function does not evolved with time at

these points. Therefore we fixed the distribution Hðt;�nmaxÞ at its initial value Hð0;�nmaxÞ (in practice kDe
k0nmax

	 1). So, we used
the following boundary conditions: 8t P 0
onHðt;�nminÞ ¼ 0; ð3:4Þ
Hðt;�nmaxÞ ¼ Hð0;�nmaxÞ; ð3:5Þ
Hðt; nmaxÞ ¼ Hð0; nmaxÞ: ð3:6Þ
The finite difference scheme reads:
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where bk
j is an approximation of jnj3jbEj2 at time tk. Note that coefficient bk in (3.8) is known and equation (3.7) is linear in

Hkþ1. Then, with this scheme, we can evaluate m̂ðnj; tkþ1Þ on the frequency grid with the following centered finite difference
scheme:
m̂kþ1
j ¼ sgnðnjÞ
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As shown in [2], one takes
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which corresponds to the energy exchange between electrons and the electronics plasma waves. One also have a numerical
maximum principle for m̂. If m̂0 satisfies
m̂0ðnjÞP 0; j ¼ �N
2
; . . . ;

N
2
� 1;
then for all k > 0
m̂k
j P 0; j ¼ �N

2
; . . . ;

N
2
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In order to illustrate how the quasi-linear diffusion works on the solution, we have computed the diffusion equation with a
diffusion coefficient given by a fixed electric field
Eðt; xÞ ¼ eiðk1x�x1tÞe�
x�L

2ð Þ
2

2ML2 ;
with L ¼ 2000, ML ¼ 50 and k1 ¼ 0:45. The initial electron distribution function is assumed to be a Maxwellian,
Fe0ðvÞ ¼
1ffiffiffiffiffiffiffi
2p
p exp � v2

2

� �

which gives the following initial condition for the Landau damping rate
m̂ð0; nÞ ¼
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p
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r
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e
� 1

2n2 :
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We can remark on Fig. 1 that the electron distribution function is flattened near the phase velocity v/ ¼ 1
k1
¼ 2:22 and since

the Landau damping rate depends on the slope of the electron distribution, we can see that bm tends toward zero near n ¼ k1.
We will see in Section 5, what happens when we take into account the time evolution of the diffusion coefficient.

Step 2: The Raman amplification. For the Raman amplification, we introduce a fractional-step, Crank–Nicolson-type
scheme with relaxation introduced by of Besse for NLS equation (see [4]). For the acoustic part, we use the scheme intro-
duced by Glassey (see [10]). This allows us to compute the values Akþ1

0 , Akþ1
R , dnkþ1 of A0, AR and dn at time tkþ1 as well as

an intermediate value Ekþ1
# of E at time kþ 1. This value Ekþ1

# will be used as initial datum for the last step of the splitting.
We consider centered discretization for each spatial differential operator. Therefore, oy is approximated by the centered fi-
nite difference operator D0:
Fig. 1.
Landau
ðD0EÞi ¼
Eiþ1 � Ei�1

2dy
;

and o2
y by DþD�:
ðDþD�EÞi ¼
Eiþ1 � 2Ei þ Ei�1

dy2 :
For this first step of the splitting, the scheme reads:
i
Akþ1

0 � Ak
0

dt
þ ðiv0D0 þ a0DþD�Þ

Akþ1
0 þ Ak

0

2

 !
¼ b0

dnkþ1 þ dnk

2

� �
Akþ1

0 þ Ak
0

2

 !

� c0

2
/kþ1

2
Akþ1

R þ Ak
R

2

 !
e�ihkþ1

2 � c0

2
wkþ1

2
D0Ekþ1

# þ D0Ek

2

 !
e�ihkþ1

2 ; ð3:12Þ

i
Akþ1

R � Ak
R

dt
þ ðivRD0 þ aRDþD�Þ

Akþ1
R þ Ak

R

2

 !
¼ bR

dnkþ1 þ dnk

2

� �
Akþ1

R þ Ak
R

2

 !
� cRð/

kþ1
2Þ� Akþ1

0 þ Ak
0

2

 !
eihkþ1

2 ; ð3:13Þ

i
Ekþ1

# � Ek

dt
þ aEDþD�

Ekþ1
# þ Ek

2

 !
¼ bE

dnkþ1 þ dnk

2

� �
Ekþ1

# þ Ek

2

 !
þ cED0 wkþ1

2

� �� Akþ1
0 þ Ak

0

2

 !
eihkþ1

2

" #
; ð3:14Þ

dnkþ1 � 2dnk þ dnk�1

dt2 � v2
s DþD�

dnkþ1 þ dnk�1

2

� �
¼ d2DþD�ðjEkj2Þ þ d1DþD�ðjAk

0j
2 þ jAk

Rj
2Þ; ð3:15Þ
for the time step of length dt.
The auxiliary functions / and w are given by
/kþ1
2 þ /k�1

2

2
¼ D0Ek;

wkþ1
2 þ wk�1

2

2
¼ Ak

R: ð3:16Þ
/kþ1
2 and wkþ1

2 are prediction, respectively of oyE and AR at time tkþ1=2 ¼ kþ 1
2

� 	
dt. Moreover the value /�

1
2 and w�

1
2 are obtained

by explicit integration of the system on one half-time step backward.
The left plot corresponds to the electron distribution function Fe at different time in function of the velocity v and the right plot corresponds to the
damping rate bm at different time in function of the frequency n.
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The discretization of the phase hkþ1
2 is given by
hkþ1
2 ¼ k1y�x1tkþ1=2:
Step 3: The Landau For the last step, we take
bEkþ1ðnjÞ ¼ bEkþ1
# ðnjÞ exp � dt

2
m̂kþ1

j þ m̂k
j

� �� �
: ð3:17Þ
The values of Ekþ1
j are recovered by an inverse fast Fourier transform.

3.2. L2 stability result

The first stability result concerns the semi-discretization in time of the model. This semi-discretization in time is obtained
by discretization of (2.12)–(2.17) only in time and using the same time-splitting as described before. It is obtained by replac-
ing the discrete operators in space by their counterpart in the previous paragraph. We keep the same notations for the un-
knowns that denotes in this section the semi-discretized version of A0, AR, E, m, dn.

We are able to prove a stability result for the semi-discrete scheme:

Proposition 3.1. (L2 stability) If the initial data m0 satisfy cm0ðnÞP 0 for all n, then for all k > 0, any solution Ak
0;A

k
R; E

k
� �

given by
the semi-discrete scheme satisfies
Z

R

2
1
c0
jAk

0j
2 þ 1

cR
jAk

Rj
2 þ 1

cE
jEkj2

� �
dy 6

Z
R

2
1
c0
jA0

0j
2 þ 1

cR
jA0

Rj
2 þ 1

cE
jE0j2

� �
dy:
This result is the discrete version of proposition (2.1). Note that the last term in (2.20) 2xpe

x0cE

R
m̂ðt; nÞjbEj2ðt; nÞdn is non-neg-

ative. Unfortunately, we are not able to obtain the exact counterpart of this term. We are only able to prove (see lemma 3.1
below) that mk P 0 and therefore we only prove that the step of the splitting devoted to the computation of the Landau
damping decrease the energy and we obtain that the energy of the electromagnetic part is decreasing.

Proof. Using (3.17) and the Parseval formula for Ekþ1, we have
Z
R

2
c0

Akþ1
0

��� ���2 þ 1
cR

Akþ1
r

��� ���2 þ 1
cE
jEkþ1j2dy ¼

Z
R

2
c0

Akþ1
0

��� ���2 þ 1
cR

Akþ1
R

��� ���2dyþ 1
cE

Z
R

dEkþ1
#

���� ����2 expð�dtðm̂kðnÞ þ m̂kþ1ðnÞÞÞdn:

ð3:18Þ
In order to conclude, we need the following version of the maximum principle.

Lemma 3.1. If m̂0ðnÞP 0 for all n, then for all k > 0, any solution m̂k of (3.7)–(3.9) satisfy m̂kðnÞP 0 for all n.

Proof. See [2]. Using the lemma 3.1 and again the Parseval formula, one gets
Z
R

2
c0

Akþ1
0

��� ���2 þ 1
cR

Akþ1
R

��� ���2 þ 1
cE
jEkþ1j2dy 6

Z
R

2
c0

Akþ1
0

��� ���2 þ 1
cR

Akþ1
R

��� ���2 þ 1
cE

Ekþ1
#

��� ���2dy: ð3:19Þ
In order to conclude, we need to prove that
Z
R

2
c0

Akþ1
0

��� ���2 þ 1
cR

Akþ1
R

��� ���2 þ 1
cE

Ekþ1
#

��� ���2dy ¼
Z

R

2
c0

Ak
0

��� ���2 þ 1
cR

Ak
R

��� ���2 þ 1
cE
jEkj2dy:
To this aim, we compute
2
c0

Z
R

ð3:12Þ Akþ1
0 þ Ak

0

2

 !�
þ 1

cR

Z
R

ð3:13Þ Akþ1
R þ Ak

R

2

 !�
þ 1

cE

Z
R

ð3:14Þ
Ekþ1

# þ Ek

2

 !�
;

and take the imaginary part. This yields
1
2dt

Z
R

2
c0

Akþ1
0

��� ���2 þ 1
cR

Akþ1
R

��� ���2 þ 1
cE

Ekþ1
#

��� ���2� �
� 1

2dt

Z
R

2
c0

Ak
0

��� ���2 þ 1
cR

Ak
R

��� ���2 þ 1
cE
jEkj2

� �
¼ �Im

Z
R

/kþ1
2

Akþ1
R þ Ak

R

2

 !
e�ihkþ1

2 Akþ1
0 þ Ak

0

2

 !�
� Im

Z
R

wkþ1
2

oyEkþ1
# þ oyEk

2

 !
e�ihkþ1

2 Akþ1
0 þ Ak

0

2

 !�

� Im
Z

R

/kþ1
2

� �� Akþ1
0 þ Ak

0

2

 !
eihkþ1

2 Akþ1
R þ Ak

R

2

 !�
þ Im

Z
R

oy wkþ1
2

� �� Akþ1
0 þ Ak

0

2

 !
eihkþ1

2

 !
Ekþ1

# þ Ek

2

 !�
¼ �I� II� IIIþ IV:
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It is clear that I ¼ �III. Moreover
IV ¼ �Im
Z

R

wkþ1
2

� �� Akþ1
0 þ Ak

0

2

 !
eihkþ1

2
oy

Ekþ1
# þ Ek

2

 !�
¼ II:
The result follows. h

Proposition 3.1 holds for the full discretization of the system in a periodic framework. This can be shown by using the fact
that if we assume m̂ðt; nÞ ¼ 0 for all ðt; nÞ, then it is shown in [6] that any solution of (3.12)–(3.14) satisfies
2
c0

Ak
0

��� ���2
2
þ 1

cR
Ak

R

��� ���2
2
þ 1

cE
jEkj22 ¼

2
c0
jA00j22 þ

1
cR
jAR0j22 þ

1
cE
jE0j22;
where
jf j22 ¼
XN

j¼1

jfjj2
is the l2 discrete norm. In our case, we have to include the Landau damping term m̂ðt; nÞ. The key point is that we have used a
time-splitting discretization which allows us to write
2
c0

Akþ1
0

��� ���2
2
þ 1

cR
Akþ1

R

��� ���2
2
þ 1

cE
Ekþ1

#

��� ���2
2
¼ 2

c0
Ak

0

��� ���2
2
þ 1

cR
Ak

R

��� ���2
2
þ 1

cE

XN

j¼1

Ekþ1
j

��� ���2: ð3:20Þ
By using twice the Parseval formula, the maximum principle (3.11) and (3.17), we obtain that
XN

j¼1

Ekþ1
j

��� ���2 6XN

j¼1

Ekþ1
#j

��� ���2

and the result follows.

3.3. The three wave resonance condition

As noted in the introduction, we expect a growth on AR which corresponds to the decomposition of the laser A0 into a
backscattered electromagnetic wave AR and an electronic plasma waves E. The classical matching conditions for this
three-waves resonance interactions is
k0 ¼ kR þ k1;x0 ¼ xR þxpe þx1;
where
x2
0 ¼ x2

pe þ k2
0c2;x2

R ¼ x2
pe þ k2

Rc2ðxpe þx1Þ2 ¼ x2
pe þ 3v2

thek2
1:
As recalled in the introduction and since x1 
 xpe (see [5]), this last condition implies x1 � 3
2 xpeðk1kDeÞ2 where kDe ¼ vthe

xpe
is

the Debye’s length.
This means that ðk1;x1Þ satisfies the dispersion relation of the linear part of (2.14) and therefore the term A�RA0eiðk1y�x1tÞ is

resonant with the left-hand-side of (2.14) and E will grow linearly int time. If this relation is not satisfied, E will not grow and
the instability does not take place see [6]. This is true at the discrete level: ðk1;x1Þ has to satisfy the dispersion relation of the
left-hand-side of the numerical scheme (3.14). This discrete dispersion relation reads
x1 ¼
2
dt

arctan aEdt
1� cosðk1dyÞ

dy2

� �
: ð3:21Þ
We will see in the numerical result section that this modification of the dispersion relation is crucial.
4. The boundary conditions

For physical considerations, we use absorbing boundary conditions for A0 and AR and dn. A lot of work involving trans-
parent boundary conditions are available (see for example Di Menza [9], X. Antoine-C. Besse [1,12] for a review). Here we
take into account the particular physical setting and we use a very simple version of absorbing boundary conditions. In fact,
in order to model a realistic plasma slab, non-periodic boundary conditions in (3.12) and (3.13) are imposed. This condition
will ensure that if the Raman backscattered field, the laser field and the density fluctuation leave the simulation box no
reflection can influence the propagation of the laser field and the growth of the Raman field. It appears physically that it
is very important to impose absorbing boundary conditions for A0 and AR and dn. In order to explain our choice of boundaries
conditions, we introduce two simple independent (one for the Raman and laser fields and one for the density fluctuation)
models on which one can explain our strategy.
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4.1. Boundary condition for the Schrödinger equation

For the first model, we focus on the equations involving the laser potential and the Raman backscattered potential:
iðotA0 þ v0oyA0Þ þ a0o
2
yA0 ¼

x2
pe

2x2
0

dnA0 �
k0

kDe

x2
pe

x2
0

ðoyEÞARe�iðk1y�x1tÞ; ð4:1Þ

iðotAR þ vRoyARÞ þ aRo
2
yAR ¼

x2
pe

2xRx0
dnAR �

k0

kDe

x2
pe

x0xR
ðoyE�ÞA0eiðk1y�x1tÞ; ð4:2Þ
where a0 ¼ 1
2 v0ð1� v0Þ and aR ¼ x0

2xR
1� c2k2

R
x2

R

� �
. The key point is that in physical applications, j v0 j and j vR j are close and the

dispersion coefficient a0, aR are closed to zero (a0;R � 10�3). It follows that the linear part of equations (4.1) and (4.2) is a
dispersive perturbation of a linear transport equation (see [5,6]). Therefore we will focus on the following Schrödinger
equation
iðotuþ oyuÞ þ eo2
yu ¼ 0; 0 6 y 6 1; ð4:3Þ

uðt;0Þ ¼ 0; ð4:4Þ
uð0; yÞ ¼ u0ðyÞ; ð4:5Þ
where e a small positive parameter that can denote successively a0 or aR. The goal of this study is to give an effective absorb-
ing boundary condition for (4.3)–(4.5) at point y ¼ 1 (for AR, one has to make a symmetry with respect to y ¼ 1=2 since
vR < 0). Since we deal with dispersive perturbation of a transport equation, the natural choice is to impose that the solution
satisfies the transport equation at point y ¼ 1,
ðot þ oyÞuðt;1Þ ¼ 0: ð4:6Þ
It is not clear if this boundary condition is an absorbing boundary condition. The following proposition ensure this.

Proposition 4.1. Any solution u of (4.3), (4.4), (4.5) and (4.6) satisfies
d
dt

Z
joyuj2dy ¼ �ðjoyuðt;0Þj2 þ joyuðt;1Þj2Þ: ð4:7Þ
Proof. By multiplying the equation (4.3) by otu�, integrating in space, taking the real part, and integrating by part the dis-
persive term, we get
Re
Z

ioyuotu�dy� e
2

d
dt

Z
joyuj2dyþ eReðoyuðt;1Þotu�ðt;1ÞÞ ¼ 0 ð4:8Þ
since otuðt;0Þ ¼ 0. Now using the boundary condition (4.6), and plugging iotu� ¼ �ioyu� þ eo2
y u� in the first term of (4.7), we

get
eRe
Z

oyuo2
y u� � e

2
d
dt

Z
joyuj2dy� ejoyuðt;1Þj2 ¼ 0: ð4:9Þ
and the result follows since eRe
R

oyuo2
yu� ¼ e

2 joyuðt;1Þj2 � e
2 joyuðt;0Þj2. h

Remark 4.1. Using Poincare’s lemma, proposition 4.1 expresses the fact that with the boundary condition (4.6), the energy
(L2-norm) decreases with time. Therefore, the estimate (4.7) show us that we can define the boundary trace of oyu at points
y ¼ 0 and y ¼ 1.

For the numerical counterpart of this proposition, we use a Crank–Nicolson type scheme for (4.3)–(4.6). With the notations
previously used, the scheme reads
i
ukþ1

j � uk
j

dt
þ ðiD0 þ eDþD�Þ

ukþ1 þ uk

2

� �
j
¼ 0; for 2 6 j 6 N � 1: ð4:10Þ
We discretize the boundary condition (4.6) by using the following discretization of the linear transport equation
ukþ1
N � uk

N

dt
þ Dþ

ukþ1 þ uk

2

� �
N

¼ 0: ð4:11Þ
We have a discrete version of proposition 4.1

Proposition 4.2. Any solution uk of (4.10) and (4.11) satisfies
dy
dt

XN�1

j¼2

ukþ1
jþ1 � ukþ1

j

dy

�����
�����
2

�
XN�1

j¼2

uk
jþ1 � uk

j

dy

�����
�����

2
0@ 1A ¼ � ~u2 � ~u1

dy

���� ����2 þ ~uN � ~uN�1

dy

���� ����2
 !
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where ~uj ¼
ukþ1

j
þuk

j

2 .

Proof. The proof of this proposition follows the same line than that of the continuous case and we omit it.
4.2. Boundary condition for the wave equation

We now focus on the wave equation (2.15) describing the evolution of the fluctuation density of the ions
o2
t � v2

s o
2
y

� �
dn ¼ me

4mi

k2
0

k2
De

x2
pe

x2
0

o2
y jEj

2 þ me

4mi
vso

2
yðjA0j2 þ jARj2Þ; ð4:12Þ
and more particularly on the source term (the ponderomotive force). This source term contains three terms that propagate at
different velocities. The first term o2

y j Ej
2 describes the fluctuation due to the propagation of the longitudinal electronic plas-

ma waves. The second and the third terms o2
yðjA0j2 þ jARj2Þ describe the fluctuation of density due to the propagation of the

electromagnetic laser field and the Raman backscattered wave. The key point is that in physical applications, the velocity vs

of the acoustic waves is small compared to, the group velocity v0 of the laser and the group velocity vR of the Raman field.
Moreover the group velocity of electronic plasma waves is also small compared to the electromagnetic waves. Therefore the
significant part is
o2
t dn� v2

s o
2
ydn ¼ o2

y f0ðy� v0tÞ þ o2
y fRðy� vRtÞ; 0 6 y 6 1; ð4:13Þ

dnð0; yÞ ¼ 0; 0 6 y 6 1; ð4:14Þ
otdnð0; yÞ ¼ 0; 0 6 y 6 1; ð4:15Þ
where v0 > 0, vR < 0 and vs is a small positive parameter such that vs 
 v0; j vR j. Here, f0 and fR are given functions and they
refer to the fields A0 and AR, respectively. The exact solution of (4.13)–(4.15) reads
dnðt; yÞ ¼ af0ðy� vstÞ þ bf0ðyþ vstÞ þ cf0ðy� v0tÞ þ dfRðy� vRtÞ; ð4:16Þ
where a, b, c and d are real constant.
This explicit solution for dn shows us that the perturbations of density due to the source terms o2

y f0;Rðy� v0;RtÞ propagate
more rapidly than af0ðy� vstÞ þ bf0ðyþ vstÞ. We work on a time scale for the full system for which this perturbation at veloc-
ity vs does not have the time to leave the computational domain. It is therefore sufficient to build absorbing boundary con-
ditions for the perturbations which leave the domain at velocity v0, respectively vR at point y ¼ L, respectively at point y ¼ 0.
To ensure this, the boundary conditions for dn consists in our case in the following first order boundary conditions
otdnþ vRoydn ¼ 0; y ¼ 0; ð4:17Þ
otdnþ v0oydn ¼ 0; y ¼ 1: ð4:18Þ
In order to validate this kind of boundary condition, we use the scheme introduced by Glassey [10]. It reads
dnkþ1 � 2dnk þ dnk�1

dt2 � v2
s DþD�

dnkþ1 þ dnk�1

2

� �
¼ DþD� f k

0 þ f k
R

� 	
; ð4:19Þ
where the discrete operator DþD� is defined by
ðDþD�dnÞi ¼
dniþ1 � 2dni þ dni�1

dy2 ; i ¼ 2;N � 1: ð4:20Þ
The quantities dnk
1; dnk

N are given by the following discretization of the boundary conditions (4.17) and (4.18) at each time
step k
dnkþ1
1 ¼ 1þ vRdt

dy

� �
dnk

1 �
vRdt
dy

dnk
2; ð4:21Þ

dnkþ1
N ¼ 1� v0dt

dy

� �
dnk

N þ
v0dt
dy

dnk
N�1: ð4:22Þ
For the numerical illustrations of this problem, we take vs ¼ 0:15, v0 ¼ 0:9, vR ¼ �0:8, f0;Rðt; yÞ ¼ 0:02e�
y�1

2�v0;Rtð Þ2
2 , N ¼ 1024

and dt ¼ dy min 1
v0
; 1
jvr j

� �
. The initial conditions n0 and n1 are set to zero.

On Fig. 2, we can see the evolution of the density fluctuation with time. At the beginning of the simulation, a perturbation
due to the force f0; fR causes a sink of density. This perturbation propagates at four velocities which are vR;�vs; vs; v0. It is
obvious that the perturbations propagating at velocity vR; v0 go more quickly than the others propagating at velocity
�vs; vs. The part of the perturbation traveling at velocity vR (v0) leaves the simulation box at point y ¼ 0 (y ¼ 1) (see
Fig. 2). The perturbations going at velocity �vs still propagate.

Remark 4.2. At this point, we gave some effective absorbing boundary conditions for a linear Schrödinger equation and for a
wave equation. For the linear Schrödinger equation endowed by the boundary condition (4.3), we found an estimate which



Fig. 2. Spatio-temporal evolution of the density fluctuation dn solution of (4.13)–(4.15) endowed with the boundary conditions (4.17) and (4.18).
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shows us that the energy of the solution decrease with time. Unfortunately, we are not able to give such a theoretical result
on a nonlinear version of this kind of system. Nevertheless, in the next part, we show that we can apply this kind of boundary
conditions on a Zakharov model with a satisfactory numerical accuracy.
4.3. The boundary conditions for the Zakharov system

Using the boundary conditions for the Schrödinger equation and for the wave equation, we obtain the following Zakharov
model
iðotuþ voyuÞ þ eo2
y u ¼ nu; 0 < y < 1; ð4:23Þ

o2
t dn� v2

s o
2
ydn ¼ o2

yðjuj
2Þ; 0 < y < 1; ð4:24Þ

uð0; yÞ ¼ u0ðyÞ; ð4:25Þ
uðt;0Þ ¼ 0; ð4:26Þ
otuþ voyu ¼ 0; y ¼ 1; ð4:27Þ
dnð0; yÞ ¼ 0; otdnð0; yÞ ¼ 0; ð4:28Þ
otdnþ voydn ¼ 0; y ¼ 1: ð4:29Þ
Even if we are not able to justify rigorously our set of boundary conditions for the full Zakharov system (4.23)–(4.29), the
numerically accuracy is satisfactory. Indeed, in Fig. 3, we have plotted the modulus of electric field u and the variation of
density dn with respect to time. As seen on the snapshots, no visible reflexions can be seen on any of the curves. For the sim-
ulation described in Fig. 3, we have taken dt ¼ dy ¼ 0:01. Of courses, these results has to be confirmed on the complete
system

For the whole system, we therefore consider the following set of boundary conditions to
otA0 þ v0oyA0 ¼ 0; y ¼ L; ð4:30Þ
otAR þ vRoyAR ¼ 0; y ¼ 0; ð4:31Þ
otdnþ v0oydn ¼ 0; y ¼ L; ð4:32Þ
otdnþ vRoydn ¼ 0; y ¼ 0: ð4:33Þ
Concerning the plasma waves, since the group velocity of the electronic plasma waves is small with respect to v0 and vR (see
[5,6]), we use periodic boundary condition for E, that is Eð0Þ ¼ EðLÞ. These boundary conditions are discretized as we de-
scribed previously using a spectral method.

The detailed numerical results are given in the next section.



Fig. 3. Spatio-temporal evolution of j u j ðt; yÞ (left) and dnðt; yÞ (right) solution of (4.23) and (4.29) for e ¼ 5 � 10�3.
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5. Numerical results

The numerical computations are obtained with the dimensionless system (2.12)–(2.18) where the time unit is T ¼ 1
x0

, the
space unit is L ¼ k0 ¼ 1

k0
and the velocity unit is V ¼ vthe ¼ xpekDe.

The physical parameters that we use until the end of this section are the following ones. They are representative of the
physics that is involved [13,14].

� the velocity of light is c ¼ 3 � 108 m s�1,
� the thermal velocity of electrons is taken to be equal to vthe ¼ 0:1c,
� the mass ratio is taken to be me

mi
¼ 1

2000,

� the sound velocity is cs ¼
ffiffiffiffiffi
me
mi

q
vthe,

� the plasma frequency xpe ¼ 3 � 1015 s�1,
� the wave number of the laser field k0 ¼ 3 � 106,
� the Debye’s length kDe ¼ vthe

xpe
¼ 10�8 m.

With this parameters, we compute the frequency x0 thanks to the dispersion relation
x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

pe þ k2
0c2

q
:

The others parameters kR, k1, xR and x1d are computed using the following matching conditions for the three-waves reso-
nance condition:
k0 ¼ kR þ k1; x0 ¼ xR þxpe þx1d;
where
xR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

pe þ k2
Rc2

q
; x1d ¼

2
dt

arctan adt
1� cosðk1dyÞ

dy2

� �
;

where a ¼ 3k2
0

2k2
De

.

We will perform the computations of the solution of system (2.12)–(2.18) on the spatial domain ½0; Ly� with Lk0 ¼ 250.
For the initial conditions, we consider a gaussian initial data for A0 of the form
A0ð0; xÞ ¼ 0:3e�0:01ðx�40Þ2 :
In the context of simulated Raman instability, a non-zero initial datum is needed on AR in order to start the instability and we
take ARð0; xÞ ¼ 0:005A0ð0; xÞ. Furthermore, E, dn and otdn are taken equal to 0 at time t ¼ 0. The initial electron distribution
function is assumed to be a Maxwellian:
Feð0; vÞ ¼
1ffiffiffiffiffiffiffi
2p
p e�

v2
2 ;
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which gives the following initial condition for the Landau damping rate
Fig. 4.
simulat
conditi

Fig. 5.
simulat
m̂ð0; nÞ ¼
ffiffiffiffi
p
8

r
k3

De

k3
0

1

jnj3
e
�

k2
De

2k2
0

n2
:

The number of discretization points in space is Ny ¼ 2048 and we choose dt ¼ dy min 1
v0
; 1
jvr j

� �
.

We perform the simulation on the time interval ½0; Tmax� with Tmax ¼ 100.
This section is splitted in two parts. In the first one, we provide some numerical validation of the use of our set of bound-

ary conditions and of the numerical dispersion relation. In the second part, we perform a typical computation and we com-
pare our results to two previous studies in order to emphasize the novelties of our approach.

5.1. Numerical validation

For the Schrödinger part of the Zakharov type systems, the use of Neuman boundary conditions instead of absorbing ones
give rise to reflections that change deeply the results of the computations. However, it is not clear that this effect still exist
for the complete system (2.12)–(2.15). We perform two tests that show that one has to use absorbing boundary conditions
for A0, AR and dn in order to avoid the effects of reflections. In the first test case, we use Neuman boundary conditions for AC

and AR and we keep the absorbing boundary conditions (4.17) and (4.18) for the fluctuation of density dn. We compare the
The log of the spatially averaged electron distribution function Fe as a function of kinetic energy v2

2 at initial time (solid line) and at the end of
ion t ¼ 100: the circle point corresponds to the Neumann boundary conditions on A0 and AR and the dashed line corresponds to the our boundary

ons.

The log of the spatially averaged electron distribution function as a function of the kinetic energy v2

2 at initial time (solid line) and at the end of
ion: the circle point corresponds to the Neumann boundary condition on dn and the dashed line corresponds our to the boundary conditions.
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result with that of the computation made with the whole set of absorbing boundary conditions (4.30)–(4.33). The results are
given in Fig. 4. We have plotted the log of the spatially average electron distribution Fe as a function of the kinetic energy v2

2 at
the initial time (solid line) and at the end of the simulation: the circle points correspond to the Neuman boundary conditions
on A0 and AR; the dashed line corresponds to the absorbing boundary conditions (4.27). The inverse of the slop of this curve
for large values of v2

2 is the temperature of accelerated electrons. It is clear that the use of Neuman boundary conditions for A0

and AR overestimate this temperature.
Fig. 6. maxy2½0;L� j Eðt; yÞ j as a function of time. The crossed-line correspond to the numerical dispersion relation, and the circle line correspond to the
theoretical dispersion relation.

Fig. 7. The log of the spatially averaged electron distribution function Fe as a function of the kinetic energy, for the numerical dispersion relation (dashed
line) and for the theoretical dispersion relation (circle line).
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In the second test case, we use absorbing boundary conditions for A0 ans AR but Neuman boundary conditions for dn. The
result is plotted in Fig. 5. Again, the temperature is overestimated.

It is therefore necessary to use absorbing boundary conditions.
The last point that we want to emphasize is the use of the discrete dispersion relation. We have performed two compu-

tations, the first one using the numerical dispersion relation (3.21), the second one using the continuous one (2.11). The re-
sults are given in Figs. 6 and 7. In Fig. 6, we have plotted maxy2½0;L� j E j ðt; yÞ as a function of time for both dispersion relations.
The crossed-line correspond to the numerical dispersion relation and the circle one to the continuous one.

In the case where we used the continuous dispersion relation, the discretization of A�RA0eiðk1y�x1tÞ is not resonant with the
discretization of the linear part of (2.14). This means that, the amplitude of the electronic plasma waves does not reach the
necessary threshold to develop the Raman instability [14] and we stay in a linear regime where the Landau damping phe-
nomena plays no role on the saturation level of the electronic plasma waves. It is the reason for which the continuous rela-
tion does not give the right saturation level for the electronic plasma waves.

In the case where we used the discrete dispersion relation, the discretization of A�RA0eiðk1y�x1tÞ is resonant with the discret-
ization of the linear part of (2.14). So the amplitude of the electronic plasma waves reaches the threshold to start the Raman
instability and the exchange of energy between the electronic plasma waves and the electrons (Landau damping) can occurs.

On Fig. 7, we have plotted the log of the spatially average electron distribution function as a function of the kinetic energy
for both dispersion relations. The use of the continuous dispersion relation induces an underestimate of the electron heating.
It is therefore necessary to use the discrete dispersion relation.
Fig. 8. Spatio-temporal evolution of the modulus of the normalized potentials A0 and AR: j A0 j ðt; yÞ (left) and ARðt; yÞ (right) solutions of the full system.

Fig. 9. Snapshots of the modulus of the electronic plasma waves E at time t ¼ 10n for n ¼ 1 (a), n ¼ 10 (b) in the resonant case.
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5.2. Reference test case and comparison to previous models

We present in Figs. 8 and 9 the spatio-temporal evolution of the modulus of the fields A0, AR, E. As indicated before A0

moves to the right with a positive velocity. AR moves to the left because it has a negative velocity while E is stationary.
In Fig. 10, one can compare the time evolution of the L2-norm of the fields. For AR and E, one has a rapid growth corre-

sponding to the Raman instability followed by a saturation stage. In Fig. 7 (dashed line), we have plotted the spatially aver-
aged electron distribution function of the kinetic energy at the end of the simulation. One can observe a significant heating of
the electrons (the temperature is given by the inverse of the slop of the curve).

At the beginning of simulation, the laser field and the stimulated Raman field interact in order to create an electronic plas-
ma waves. These three fields combine in order to create a perturbation on the low-frequency density dn. The laser field prop-
agates on the positive y-direction and create on its way Raman backscattered wave which propagate on the y-negative
direction. Concerning the evolution of the spatial profile of the electronic plasma wave created by the three wave resonance,
we can see that its amplitude grows with time and therefore this confirms that its velocity is small with respect to that of AR

and A0 as can be seen in its dispersion relation.
Fig. 10. L2 norm in function of time for A0 corresponding to the solid line, AR corresponding to the circle points and E corresponding to the square line.

Fig. 11. The L2 norm of j E j in function of time without Landau damping (circle line) and with Landau damping (dotted line) by using the numerical
dispersion relation.



Fig. 12. Time evolution of the electron kinetic energy EkðtÞ ¼ 1
2

R
v2Feðt; vÞdv� 1

2 for the full system (circle line) and for fixed A0, AR (solid line).
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The Fig. 10 shows that there are some energy exchanges between the different fields. In a first stage, there is a transfer of
energy from the laser field to the Raman field and to the electronic plasma waves until an amplification threshold is reached.
This stage occurs before time x0t ¼ 15.

In a second stage, the evolution becomes nonlinear and the Landau damping acts. A new plasma waves is created and a
transfer of energy between this plasma wave and the electrons take place. This lead to a creation of hot electron tail as can be
seen on the Fig. 10. The saturation level of the Raman begins to decrease.

Our model is therefore able to describe the main feature of this coupling. We now compare our result with two previous
models. The first model is the Raman instability without Landau damping [6]. The result is given in Fig. 11. The saturation
threshold for the electronic plasma waves is lower if we take into account the landau damping that allows transfers of energy
from the electronic plasma waves to the accelerated electrons.

The second model is the Landau damping ones used in [2]. It consists in fixing A0 and AR and keeping only Eq. (2.14). The
result is given in Fig. 12. We have plotted the electron energy 1

2 v2Feðt; vÞdv� 1
2 as a function of time for both systems. The

Landau system of [2] overestimate the transfer of energy to the accelerated electrons.

6. Conclusion

In this paper, we have introduced a new system describing the coupling of the landau damping and the Raman amplifi-
cation. We have proposed a numerical scheme and proved its L2 stability.

We have provided a set of boundary conditions and we have showed numerically that they are necessary to obtain accu-
rate results. The Raman instability relies on a three-waves interaction condition. We have introduced a numerical dispersion
relation and we have validated it.

We have compared our results with two previous models and we obtain a more reliable simulation of the main features of
this complex physical process, without using kinetic-type models.

Further development should concern a multi-D version of the Landau damping as well as the construction of intermediate
models between full Vlasov–Maxwell and the one considered here.
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